Anja Pucer Department of Molecular and Biomedical Sciences Jozef Stefan Institute

Effects of group X secretory phospholipase A₂ overexpression on proliferative and invasive properties of breast cancer cells MDA-MB-231

Phospholipases A_2 (PLA₂) catalyse the first step in the arachidonic acid (AA) metabolism that leads to synthesis of eicosanoids (prostaglandins, leukotrienes, lipoxins), important mediators of inflammation. Elevated levels of prostaglandins and the key enzymes in the AA pathway, including secretory PLA₂ (sPLA₂), have been linked to the development of several cancers. The aim of our work is to elucidate the role of sPLA₂ in breast cancer.

By means of quantitative real-time PCR (qPCR) we determined the expression profile of the complete set of all 10 human sPLA₂s (hsPLA₂) in seven breast epithelial and cancer model cell lines. hsPLA₂s from groups IIA, IIF, III, V in X were found to be differentially expressed in these cell lines. In order to determine the impact of hsPLA₂s on the proliferative and invasive properties of breast cancer cells, we performed gain of function studies by overexpressing hsPLA₂ in breast cancer cells. The highly invasive breast cancer cell line MDA-MB-231, which displays undetectable levels of hsPLA₂-X expression, was transfected with a plasmid carrying the group X hsPLA₂ (hsPLA₂-X) cDNA. Stable transfectants were generated by clonal selection and overexpression of hsPLA₂-X was confirmed by qPCR.

The B1/C10 clone, which displayed the highest level of hsPLA₂-X overexpression, had a significantly lower proliferation rate than non-transfected cells, as determined by the MTT viability assay. However, the preliminary results obtained by the Click-It EdU proliferation assay suggest that B1/C10 cells have a higher proliferation rate than non-transfected cells. Exogenously added recombinant hsPLA₂-X caused a significant decrease in the proliferation rate of MDA-MB-231 cells as determined by the MTT and Click-It EdU proliferation assay. The invasive properties of transfected and non-transfected cell lines were compared using an optimized *in vitro* invasion assay using Matrigel. The B1/C10 clonal cell line overexpressing hsPLA₂-X had a significantly lower invasive potential than its non-transfected counterpart.

Our results show that overexpression of hsPLA₂-X in the highly invasive MDA-MB-231 breast cancer cells as well as exogenously added hsPLA₂-X have an influence on their proliferation rate. In addition, overexpression of hsPLA₂-X decreases the invasive potential of MDA-MB-231 cells.