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Abstract Extremophilic microorganisms are adapted to
survive in ecological niches such as at high temperatures,
extremes of pH, high salt concentrations and high
pressure. These microorganisms produce unique
biocatalysts that function under extreme conditions
comparable to those prevailing in various industrial
processes. Some of the enzymes from extremophiles
have already been puri®ed and their genes successfully
cloned in mesophilic hosts. In this review we will brie¯y
discuss the biotechnological signi®cance of extreme
thermophilic (optimal growth 70±80 °C) and hyper-
thermophilic (optimal growth 85±100 °C) archaea and
bacteria. In particular, we will focus on selected
extracellular-polymer-degrading enzymes, such as amy-
lases, pullulanases, cyclodextrin glycosyltransferases,
cellulases, xylanases, chitinases, proteinases and other
enzymes such as esterases, glucose isomerases, alcohol
dehydrogenases and DNA-modifying enzymes with po-
tential use in food, chemical and pharmaceutical indus-
tries and in environmental biotechnology.

Introduction

Extremophilic microorganisms are adapted to live at
high temperatures in volcanic springs, at low tempera-
tures in the cold polar regions, at high pressure in the
deep sea, at very low and high pH values (pH 0±3 or
pH 10±12), or at very high salt concentrations (5%±
30%). In the last decade a number of hyperthermophilic
archaea have been isolated that are able to grow around

the boiling point of water. The organisms with the
highest growth temperatures (103±110 °C) are members
of the genera Pyrobaculum, Pyrodictium, Pyrococcus and
Methanopyrus (Stetter 1996). Within the bacteria, Ther-
motoga maritima and Aquifex pyrophilus exhibit the
highest growth temperatures of 90 °C and 95 °C re-
spectively. So far, more than 60 species of hyperther-
mophilic bacteria and archaea are known. They consist
of anaerobic and aerobic chemolithoautotrophs and
heterotrophs. The latter are able to utilize various
polymeric substrates such as starch, hemicellulose, pro-
teins and peptides. Metabolic processes and speci®c bio-
logical functions of these microorganisms are mediated
by enzymes and proteins that function under extreme
conditions. The enzymes that have been isolated recently
from these exotic microorganisms show unique features,
are extremely thermostable and usually resistant against
chemical denaturants such as detergents, chaotropic
agents, organic solvents and extremes of pH (Friedrich
and Antranikian 1996; Jùrgensen et al. 1997; Leuschner
and Antranikian 1995; RuÈ diger et al. 1995). They can
hence be used as a model for designing and constructing
proteins with new properties that are of interest for in-
dustrial applications.

Running biotechnological processes at elevated tem-
perature has many advantages. The increase of tempera-
ture has a signi®cant in¯uence on the bioavailability
and solubility of organic compounds. The elevation of
temperature is accompanied by a decrease in viscosity
and an increase in the di�usion coe�cient of organic
compounds. Consequently, higher reaction rates due to
smaller boundary layers are expected (Becker et al. 1997;
Krahe et al. 1996). Of special interest are reactions in-
volving less soluble hydrophobic substrates such as
polyaromatic, aliphatic hydrocarbons and fats, and
polymeric compounds such as starch, cellulose, hemi-
cellulose and proteins. The bioavailability of hardly
biodegradable and insoluble environmental pollutants
can also be improved dramatically at elevated tempera-
tures allowing e�cient bioremediation. Furthermore,
by performing biological processes at temperatures
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above 60 °C the risk of contamination is reduced and
controlled processes under strict conditions can be car-
ried out. The number of genes from thermophiles that
have been cloned and expressed in mesophiles is in-
creasing sharply (Ciaramella et al. 1995). The majority
of proteins produced in mesophilic hosts are able to
maintain their thermostability, are correctly folded at
low temperature, are not hydrolyzed by host proteases
and can be puri®ed by using thermal denaturation of the
mesophilic host proteins. The degree of enzyme purity
obtained is generally adequate for most industrial ap-
plications.

In this review we will brie¯y discuss the biotechno-
logical signi®cance of extreme thermophilic (optimal
growth 70±80 °C) and hyperthermophilic (optimal
growth 85±100 °C) archaea and bacteria. In particular
we will focus on selected extracellular-polymer-degra-
ding enzymes (such as amylases, pullulanases, cellulases,
chitinases, xylanases, pectinases), isomerases, esterases,
dehydrogenases and DNA-modifying enzymes with po-
tential use in food, chemical and pharmaceutical indus-
tries and environmental biotechnology. Some of these
aspects have already been presented in recent publica-
tions (Antranikian 1992; Ladenstein and Antranikian
1998; Moracci et al. 1998; MuÈ ller et al. 1998; Niehaus
and Antranikian 1997; RuÈ diger et al. 1994; Sunna and
Antranikian 1997b).

Starch-degrading enzymes: biochemistry at the
boiling point of water

Starch is composed exclusively of a-glucose units that
are linked by a-1,4- or a-1,6-glycosidic bonds, forming
two high-molecular-mass components: amylose (15%±
25%), a linear polymer consisting of a-1,4-linked
glucopyranose residues and amylopectin (75%±85%), a
branched polymer containing a-1,6-glycosidic linkages
at the branching points. Owing to the complex structure
of starch, a number of enzymes are needed for its de-
gradation (Antranikian 1992; RuÈ diger et al. 1994). They
can be simply classi®ed into two groups: endo-acting
and exo-acting enzymes. Endo-acting enzymes, such as
a-amylase, hydrolyse linkages in the interior of the
starch polymer in a random fashion, which leads to the
formation of linear and branched oligosaccharides. Exo-
acting enzymes (b-amylases, glucoamylases and a-glu-
cosidases) attack the substrate from the non-reducing
end, producing oligo- and/or monosaccharides. En-
zymes capable of hydrolysing a-1,6-glycosidic bonds in
pullulan and amylopectin are de®ned as debranching
enzymes or pullulanases. On the basis of their substrate
speci®city, the pullulanases have been classi®ed into two
groups: pullulanase type I, which speci®cally hydrolyses
the a-1,6-linkages in pullulan and in branched oligo-
saccharides, and pullulanase type II or amylopu-
llulanase, which attacks both a-1,6-glycosidic linkages in
pullulan and a-1,4-linkages in other oligosaccharides
and polysaccharides.

The ®nding of extremely thermostable starch-hydro-
lysing enzymes such as amylases and pullulanases that
are active under similar conditions will signi®cantly
improve the industrial starch bioconversion process, i.e.
liquefaction, sacchari®cation and isomerization. Owing
to the lack of novel thermostable enzymes that are active
and stable above 100 °C and at acidic pH values, the
bioconversion of starch to glucose and fructose has to be
performed under various conditions. This multistage
process (step 1: pH 6.0±6.5, 95±105 °C; step 2: pH 4.5,
60±62 °C; step 3: pH 7.0±8.5, 55±60 °C) is accompained
by the formation of undesirable high concentrations of
salts. In the ®nal step, where high-fructose syrup is
produced, salts have to be removed by expensive ion
exchangers (Crabb and Mitchinson 1997).

Heat-stable amylases and glucoamylases

Enzymes from hyperthermophilic microorganisms,
which are active above 100 °C and in the compatible pH
range, are regarded as interesting candidates for use in
the starch bioconversion process. Intensive research has
been performed aimed at the isolation of thermostable
and thermoactive amylases from hyperthermophiles
(Table 1). The a-amylase (a-1,4-glucan-4-glucanohydro-
lase; EC 3.2.1.1) family consists of a large group of
starch hydrolases and related enzymes, currently known
as glycosyl hydrolase family 13 (Henrissat 1991). Ther-
mostable a-amylases have been characterized from
Pyrococcus woesei, Pyrococcus furiosus (Koch et al.
1991) and Thermococcus profundus (Chung et al. 1995;
Kwak et al. 1998; Lee et al. 1996). The optimum tem-
peratures for the activity of these enzymes are 100 °C,
100 °C and 80 °C respectively. Amylolytic activity has
been also observed in the hyperthermophilic archaea of
the genera Sulfolobus, Desulfurococcus, Thermococcus
and Staphylothermus (Bragger et al. 1989; Canganella
et al. 1994). The molecular cloning of the corresponding
genes and their expression in heterologous hosts allowed
circumvention of the problem of insu�cient expression
in the authentic host. The gene encoding an extracellular
a-amylase from P. furiosus has been recently cloned and
the recombinant enzyme expressed in Bacillus subtilis
and in Escherichia coli (Dong et al. 1997a; Jorgensen
et al. 1997). The high thermostability of the pyrococcal
extracellular a-amylase (thermal activity even at 130 °C)
in the absence of metal ions, together with its unique
product pattern and substrate speci®city, makes this
enzyme an interesting candidate for industrial applica-
tion. The gene encoding an intracellular a-amylase from
P. furiosus has been cloned and sequenced (Laderman
et al. 1993). Interestingly, the four highly conserved
regions usually found in amylases are not present in this
enzyme. Less thermoactive a-amylases have been cha-
racterized from the archaea Thermococcus profundus and
Pyrococcus sp. KOD1 and the bacterium Thermotoga
maritima. The genes encoding these enzymes were suc-
cessfully expressed in E. coli (Lee et al. 1996; Tachibana
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et al. 1996; Liebl et al. 1997). Like the amylase from
Bacillus licheniformis, which is commonly used in liq-
uefaction, the enzyme from T. maritima requires the
presence of Ca2+ for its activity (Liebl et al. 1997).
Further investigations have shown that the hyperther-
mophilic archaeon Pyrodictium abyssi can also grow
anaerobically on various polymeric substrates and se-
crete a heat-stable amylase that is active even above
100 °C (unpublished data).

Glucoamylase (1,4-glucanohydrolase; EC 3.2.1.3) is
an exo-acting enzyme that attacks a-1,4- and a-1,6-gly-
cosidic linkages of a-glucan from the non-reducing ends.
The action of this enzyme liberates one molecule of b-D-
glucose at a time, causing the complete conversion of
polysaccharides to glucose. The branching points,
however, are hydrolyzed at a very slow rate. Glucoamy-
lases are typical fungal enzymes and are among the most
important industrial enzymes that are used for the pro-
duction of glucose syrups. For the sacchari®cation of
dextrin, the glucoamylases from Aspergillus niger and
Aspergillus oryzae are generally used. Ca2+ ions were
found even to decrease the stability of the enzyme from
this latter organism (Antranikian 1992). Interestingly,
the production of glucoamylases seems to be very rare in
extreme thermophilic and hyperthermophilic bacteria
and archaea. Among the thermoanaerobic bacteria,
glucoamylases have been puri®ed and characterized
from Clostridium thermohydrosulfuricum 39E (Hyun and
Zeikus 1985) and Clostridium thermosaccharolyticum
(Specka et al. 1991). The latter enzyme is optimally ac-
tive at 70 °C and pH 5. Recently, a glucoamylase has
been puri®ed from Thermoanaerobacterium thermo-
saccharolyticum DSM 571 (Ganghofner et al. 1998).

Thermoactive pullulanases

Thermostable and thermoactive pullulanases (pullulan 6-
glucanohydrolase; EC 3.2.1.41) from extremophilic
microorganisms have been detected in Thermococcus
celer, Desulfurococcus mucosus, Staphylothermus marinus
and Thermococcus aggregans. Temperature optima be-
tween 90 °C and 105 °C, as well as remarkable ther-
mostability even in the absence of substrate and calcium
ions, have been observed (Canganella et al. 1994). Most
of the enzymes studied to date belong to the pullulanase
type II group. They have been puri®ed from P. furiosus
and Thermococcus litoralis (Brown and Kelly 1993),
Thermococcus hydrothermalis (Gantelet and Duchiron
1998) and strain ES4 (Schuliger et al. 1993). The extreme
thermostability of these enzymes, coupled with their
ability to attack both a-1,6- and a-1,4-glycosidic linkag-
es, may improve the industrial starch hydrolysis process.
Pullulanase type II from P. woesei has been expressed in
E. coli. The puri®ed recombinant enzyme is optimally
active at 100 °C and extremely thermostable with a half-
life of 7 min at 110 °C (RuÈ diger et al. 1995). The gene
encoding the same enzyme from P. furiosus was also
cloned and expressed in E. coli. (Dong et al. 1997b).

The aerobic thermophilic bacterium Thermus cal-
dophilus GK-24 produces a thermostable pullulanase of
type I. The pullulanase is optimally active at 75 °C and
pH 5.5, stable up to 90 °C and does not require Ca2+

ions for either activity or stability. The ®rst starch-
debranching enzyme (pullulanase type I) from an an-
aerobe was identi®ed in the thermophilic bacterium
Fervidobacterium pennavorans Ven5 (Koch et al. 1997).
The corresponding gene has been recently cloned and
expressed in E. coli (Bertoldo et al. 1999). In contrast to
the pullulanase from P. woesei, the enzyme from
F. pennavorans Ven5 attacks exclusively the a-1,6-gly-
cosidic linkages in polysaccharides. This is the only
thermostable debranching enzyme known to date that
attacks amylopectin, leading to the formation of long-
chain linear polysaccharides, which are the ideal sub-
strates for the action of glucoamylase (Table 1).

Cyclodextrin glycosyltransferases (CGTases)

CGTases (EC 2. 4.1.19) attack a-1,4-linkages in poly-
saccharides in a random fashion and convert starch by
an intramolecular transglycosylation reaction. The
non-reducing cyclization products of this reaction are
a-, b- or c-cyclodextrins, consisting of six, seven or
eight glucose molecules respectively. The predominant
application of CGTase is in the industrial production of
cyclodextrins. The ability of cyclodextrins to form in-
clusion complexes with a variety of organic molecules
means that they improve the solubility of hydrophobic
compounds in aqueous solutions. Cyclodextrin produc-
tion occurs in a multistage process in which, in the ®rst
step, starch is lique®ed by a heat-stable amylase and, in
the second step, the cyclization reaction with a CGTase
from Bacillus sp. takes places. Because of the low sta-
bility of the latter enzyme, the process must run at two
di�erent temperatures. The ®nding of heat-stable and
more speci®c CGTases from extremophiles will solve
this problem. The application of heat-stable CGTase in
jet cooking, where temperatures up to 105 °C are used,
will allow the liquefaction and cyclization to take place
in one step. Thermostable CGTases have been already
found in Thermoanaerobacter sp. (Norman and Jùrgen-
sen 1992; Pedersen et al. 1995) and Thermoanaerobac-
terium thermosulfurogenes (Wind et al. 1995). Recently a
heat- and alkali-stable CGTase (optimal activity 65 °C,
pH 10) was puri®ed from a newly identi®ed strain
``Anaerobranca bogoriae'', which was isolated from Lake
Bogoria, Kenya (Prowe et al. 1996).

Degradation of cellulose, the most abundant
polymer in nature

Cellulose commonly accounts for up to 40% of the plant
biomass. It consists of glucose units linked by b-1,
4-glycosidic bonds with a polymerisation grade of up
to 15 000 glucose units in an absolutely linear mode.
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Although cellulose has a high a�nity to water, it is
completely insoluble. Natural cellulose compounds are
structurally heterogeneous and have both amorphous
and highly ordered crystalline regions. The degree of
crystallinity depends on the source of the cellulose and
the higher crystalline regions are more resistant to
enzymatic hydrolysis. Cellulose can be hydrolysed into
glucose by the synergistic action of at least three di�er-
ent enzymes: endoglucanase, exoglucanase (cello-
biohydrolase) and b-glucosidase. Synonyms for
cellulases (EC 3.2.1.4) are b-1,4-D-glucan glucanohy-
drolases, endo-b-1,4-glucanases or carboxymethylcellu-
lases. This enzyme is an endoglucanase that hydrolyses
cellulose in a random manner as an endohydrolase,
producing various oligosaccharides, cellobiose and glu-
cose. The enzyme catalyses the hydrolysis of b-1,4-D-
glucosidic linkages in cellulose but can also hydrolyse
1,4-linkages in b-D-glucans containing 1,3-linkages.
Cellulases belong to the family 12 of the glucosyl hy-
drolases (Henrissat 1991).

Exoglucanases or b-1,4-cellobiosidases or exo-
cellobiohydrolases or b-1,4-cellobiohydrolases (EC
3.2.1.91) hydrolyse b-1,4 D-glucosidic linkages in cellu-
lose and cellotetraose, releasing cellobiose from the non-
reducing end of the chain. They belong to family 6 of the
glycosyl hydrolases.

b-Glucosidases (EC 3.2.1.21) or gentobiases or
cellobiases or amygdalases catalyse the hydrolysis of
terminal, non-reducing b-D-glucose residues releasing
b-D-glucose. These enzymes belong to family 3 of the
glycosyl hydrolases and have a wide speci®city for b-D-
glucosides. They are able to hydrolyse b-D-galactosides,
a-L-arabinosides, b-D-xylosides, and b-D-fucosides. Cel-
lulose-hydrolysing enzymes are widespread in fungi and
bacteria. Such enzymes have found various biotechno-
logical applications. The most e�ective enzyme of com-
mercial interest is the cellulase produced by Trichoderma
sp. (Teeri et al. 1998). Cellulases were also obtained
from strains of Aspergillus, Penicillium and Ba-
sidiomycetes (Tomme et al. 1995). Cellulolytic enzymes
can be used in alcohol production to improve juice yields
and e�ective colour extractions of juices. The presence
of cellulases in detergents causes colour brightening and
softens and improves particulate soil removal. Cellulase
(Denimax Novo Nordisk) is also used for the ``bio-
stoning'' of jeans instead of the classical stones in
stonewashed jeans. Other applications of cellulases in-
clude the pretreatment of cellulosic biomass and forage
crops to improve nutritional quality and digestibility,
enzymatic sacchari®cation of agricultural and industrial
wastes and the production of ®ne chemicals.

Thermoactive cellulases

Thermostable cellulases active towards crystalline cel-
lulose are of great biotechnologial interest. Several cel-
lulose-degrading enzymes from various thermophilic
organisms have been cloned, puri®ed and characterized.

A thermostable cellulase from T. maritima MSB8 has
been characterized (Bronnenmeier et al. 1995). The en-
zyme is rather small with a molecular mass of 27 kDa
and it is optimally active at 95 °C and between pH 6.0
and 7.0. Two themostable endocellulases, CelA and
CelB, were puri®ed from Thermotoga neapolitana. CelA
(29 kDa) is optimally active at pH 6 at 95 °C, while
CelB (30 kDa) has a broader optimal pH range (pH 6±
6.6) at 106 °C. The genes encoding these two endocel-
lulases have been identi®ed (Bok et al. 1998).

Cellulase and hemicellulase genes have been found
clustered together on the genome of the thermophilic
anaerobic bacterium Caldocellum saccharolyticum,
which grows on cellulose and hemicellulose as sole car-
bon sources. The gene for one of the cellulases (celA)
was isolated and was found to code for 1751 amino
acids. This is the largest known cellulase gene to date
(Teo et al. 1995).

A large cellulolytic enzyme (CelA) with the ability to
hydrolyse microcrystalline cellulose was isolated from
the extremely thermophilic bacterium Anaerocellum
thermophilum (Zverlov et al. 1998). The enzyme has an
apparent molecular mass of 230 kDa, exhibits signi®-
cant activity towards Avicel and is most active towards
soluble substrates such as carboxymethyl(CM)-cellulose
and b-glucan. Maximal activity was observed at pH 5±6
and 85±95 °C. The thermostable exoacting cello-
biohydrolase from T. maritima MSB8 is 29 kDa and is
optimally active at 95 °C at pH 6.0±7.5 with a half-life
of 2 h at 95 °C. The enzyme hydrolyses Avicel, CM-
cellulose and b-glucan forming cellobiose and cellotriose
(Bronnenmeier et al. 1995). A thermostable cellobiase is
produced by Thermotoga sp. FjSS3-B1 (Ruttersmith and
Daniel 1991). The enzyme is highly thermostable and
shows maximal activity at 115 °C at pH 6.8±7.8. The
thermostability of this enzyme is salt-dependent. This
cellobiase is active against amorphous cellulose and
CM-cellulose.

Recently a thermostable endoglucanase that is capa-
ble of degrading b-1,4 bonds of b-glucans and cellulose
has been identi®ed in the archaeon P. furiosus. The gene
encoding this enzyme has been cloned and sequenced in
E. coli and has signi®cant amino acid sequence simila-
rities with endoglucanases from glucosylhydrolases
family 12. The puri®ed recombinant endoglucanase
hydrolyses b-1,4 but not b-1,3-glucosidic linkages and
has the highest speci®c activity with cellopentaose and
cellohexaose as substrates (Bauer et al. 1999). In con-
trast to this, several b-glucosidases have been detected in
archaea. In fact, archeal b-glucosidases have been found
in Sulfolobus solfataricus MT4, Sulfolobus acidocaldari-
us, Sulfolobus shibatae (Grogan 1991) and P. furiosus
(Kengen et al. 1993). The enzyme from the latter mi-
croorganism (homotetramer/56-kDa subunits) is very
stable and shows optimal activity at 102±105 °C with a
half-life of 3.5 days at 100 °C and 13 h at 110 °C
(Kengen et al. 1993; Voorhorst et al. 1995). The b-glu-
cosidase from S. solfataricus MT4 has been puri®ed and
characterized (Nucci et al. 1993). The enzyme is a ho-
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motetramer (56 kDa/subunit) and very resistant to
various denaturants with activity up to 85 °C (Pisani
et al. 1990). The gene for this b-glucosidase has been
cloned and overexpressed in E. coli (Cubellis et al. 1990;
Moracci et al. 1993; Prisco et al. 1994).

Xylan-degrading enzymes

Xylan is a heterogeneous molecule that constitutes the
main polymeric compound of hemicellulose, a fraction
of the plant cell wall that is a major reservoir of ®xed
carbon in nature. The main chain of the heteropolymer
is composed of xylose residues linked by b-1,4-glycosidic
bonds. Approximately half of the xylose residues are
substituted at the O-2 or O-3 positions of acetyl, arabi-
nosyl and glucuronosyl groups. The complete degrada-
tion of xylan requires the action of several enzymes (for
a detailed description see reviews Sunna and Antrani-
kian 1997a; Sunna et al. 1996a). The endo-b-1,4-xylanase
(EC 3.2.1.8), or b-1,4-xylan xylanohydrolase, hydrolyses
b-1,4-xylosydic linkages in xylans, while b-1,4-xylosidase
or b-xylosidase or b-1,4-xylan xylohydrolase or xylobi-
ase or exo-b-1,4-xylosidase (EC 3.2.1.37) hydrolyses b-
1,4-xylans and xylobiose by removing the successive
xylose residues from the non-reducing termini. a-Ara-
binofuranosidase or arabinosidase (EC 3.2.1.55) hydro-
lyses the terminal non-reducing a-L-arabinofuranoside
residues in a-L-arabinosides. The enzyme also acts on a-
L-arabinofuranosides, a-L-arabinans containing either
1,3 or 1,5 linkages. Glucuronoarabinoxylan endo-b-1,4-
xylanase or feraxan endoxylanase or glucuronoara-
binoxylan b-1,4-xylanohydrolase (EC 3.2.1.136) attacks
b-1,4-xylosyl linkages in some glucuronoarabinoxylans.
This enzyme also shows high activity towards fe-
ruloylated arabinoxylans from cereal plant cell walls.
Acetylxylanesterase (EC 3.1.1.6) removes acetyl groups
from xylan. Xylanases from bacteria and eukarya com-
prise families 10 and 11 of the glycosyl hydrolases and
have a wide range of potential biotechnological appli-
cations. They are already produced on an industrial
scale and are used as food additives in poultry, for in-
creasing feed e�ciency (Annison 1992; Classen 1996)
and in wheat ¯our for improving dough handling and
the quality of baked products (Maat et al. 1992).

In recent years, the major interest in thermostable
xylanases lay in enzyme-aided bleaching of paper
(Viikari et al. 1994). More than 2 ´ 106 tonnes of chlo-
rine and chlorine derivatives are used annually in the
United States for pulp bleaching. The chlorinated lignin
derivatives generated by this process constitute a major
environmental problem caused by the pulp and paper
industry (McDonough 1992). Recent investigations have
demonstrated the feasibility of enzymatic treatments as
alternatives to chlorine bleaching for the removal of
residual lignin from pulp (Viikari et al. 1994). Treatment
of craft pulp with xylanase leads to a release of xylan
and residual lignin without undue loss of other pulp
components. Xylanase treatment at elevated tempera-

tures opens up the cell wall structure, thereby facilitating
lignin removal in subsequent bleaching stages. Candi-
date xylanases for this important, potential market
would have to satisfy several criteria: (1) they must lack
cellulolytic activity to avoid hydrolysis of the cellulose
®bres, (2) their molecular mass should be low enough to
facilitate their di�usion in the pulp ®bres, (3) they must
be stable and active at high temperature and at alkaline
pH, and (4) one must be able to obtain high yields of
enzyme at very low cost. All of the xylanases currently
available from commercial suppliers can only partially
ful®l these criteria. Xylanases from moderate thermo-
philic microorganisms are rapidly denatured at tempera-
tures above 70 °C. Several of the non-chlorine bleaching
stages used in commercial operations are performed well
above this temperature; consequently, pulp must be
cooled before treatment with the available enzymes and
reheated for subsequent processing steps (Chen et al.
1997).

Thermostable xylanases

So far, only a few extreme thermophilic microorganisms
are able to grow on xylan and secrete thermoactive
xylanolytic enzymes (Table 2). Members of the order
Thermotogales and Dictyoglomus thermophilum Rt46B.1
have been described to produce xylanases that are active
and stable at high temperatures (Gibbs et al. 1995;
Sunna and Antranikian 1997a). The most thermostable
endoxylanases that have been described so far are those
derived from Thermotoga sp. strain FjSS3-B.1 (Simpson
et al. 1991), T. maritima (Winterhalter and Liebl 1995),
T. neapolitana (Bok et al. 1994) and Thermotoga ther-
marum (Sunna et al. 1996b). These enzymes, which are
active between 80 °C and 105 °C, are mainly cell-asso-
ciated and most probably localized within the toga
(Ruttersmith et al. 1992; Schumann et al. 1991; Sunna
et al. 1996a; Winterhalter and Liebl 1995). Several genes
encoding xylanases have been already cloned and
sequenced. The gene from T. maritima, encoding a
thermostable xylanase, has been cloned and expressed in
E. coli. Comparison between the T. maritima recombi-
nant xylanase and the commercially available enzyme,
Pulpenzyme (Yang and Eriksson 1992) indicates that the
thermostable xylanase could be of interest for applica-
tion in the pulp and paper industry (Chen et al. 1997).
Only recently an archaeal xylanase with a temperature
optimum of 110 °C was found in the hyperthermophilic
archaeon Pyrodictium abyssi (unpublished data).

Chitin degradation

Chitin is a linear b-1,4 homopolymer of N-acetylglu-
cosamine residues and is the second most abundant
natural biopolymer after cellulose on earth. Particularly
in the marine environment, chitin is produced in enor-
mous amounts and its turnover is due to the action of
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chitinolytic enzymes. Chitin is the major structural
component of most fungi and invertebrates (Gooday
1990, 1994), while for soil or marine bacteria chitin
serves as a nutrient. Chitin degradation is known to
proceed with the endo-acting chitin hydrolase chitinase
A (EC 3.2.1.14) and the chitin oligomer exo-acting hy-
drolases chitinase B and N-acetyl-D-glycosaminidase
(trivial name: chitobiase, EC 3.2.1.52).

Endo- and exo-chitinases comprise three glycosyl
hydrolase families, i.e. families 18, 19 and 20. Chitinases,
endo-b-N-acetyl-D-glucosaminidases (EC 3.2.1.96) and
di-N-acetylchitobiases from eukarya, bacteria and vi-
ruses belong to family 18. The N-acetyl-D-glucosamine
oligomeric product retains its C1 anomeric con®gura-
tion. Family 19 contains only chitinases from eukarya
and bacteria and, in contrast to family 18, the product
has inverted anomeric con®guration. Family 20 contains
b-hexosaminidases and chitobiases. Chitobiase degrades
only small N-acetyl-D-glucosamine oligomers (up to
pentamers) and the released N-acetyl-D-glucosamine
monomers retain their C1 anomeric con®guration.

Chitin exhibits interesting properties that make it a
valuable raw material for several applications (Chandy
and Sharma 1990; Cohen-Kupiec and Chet 1998; Ge-
orgopapadakou and Tkacz 1995; Kas 1997; Muzzarelli
1997; Spindler et al. 1990). Although a large number of
chitin-hydrolysing enzymes have been isolated and their
corresponding genes have been cloned and characte-
rized, only a few thermostable chitin-hydrolysing en-
zymes are known. These enzymes have been isolated
from the thermophilic bacterium B. licheniformis X-7u
(Takayanagi et al. 1991), Bacillus sp. BG-11 (Bharat and
Hoondal 1998) and Streptomyces thermoviolaceus OPC-
520 (Tsujibo et al. 1995).

The extreme thermophilic anaerobic archaeon Ther-
mococcus chitonophagus has been reported to hydrolyse
chitin (Huber et al. 1995). This is the ®rst extremophilic
archeon found that produces chitinase(s) and N-acetyl-
glucosaminidase(s).

Protein degradation

Proteases are involved in the conversion of proteins to
amino acids and peptides. They have been classi®ed
according to the nature of their catalytic site into the
following groups: serine, cysteine or aspartic proteases
or metalloproteases (Table 3).

The amount of proteolytic enzymes produced world-
wide on a commercial scale is larger than that of any of the
other biotechnologically used enzymes. Serine alkaline
proteases are used as additives to household detergents
for laundering, where they have to resist denaturation by
detergents and alkaline conditions. Proteinases showing
high keratinolytic and elastolytic activities are used for
soaking in the leather industry. Proteinases are also used
as catalysts for peptide synthesis, using their reverse re-
action. The exploration of proteases that can catalyse
reactions under extreme conditions (high temperatures T
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and extremes of pH) will be valuable for industrial ap-
plications (Ladenstein and Antranikian 1998).

A variety of heat-stable proteases have been identi®ed
in hyperthermophilic archaea belonging to the genera
Desulfurococcus, Sulfolobus, Staphylothermus, Ther-
mococcus, Pyrobaculum and Pyrococcus. It has been
found that most proteases from extremophiles belong to
the serine type and are stable at high temperatures even in
the presence of high concentrations of detergents and
denaturing agents. A heat-stable serine protease was iso-
lated from cell-free supernatants of the hyperthermophilic
archaeon Desulfurococcus strain Tok12S1 (Cowan et al.
1987). Recently, a cell-associated serine protease was
characterized from Desulfurococcus strain SY, that
showed a half-life of 4.3 h at 95 °C (Hanzawa et al. 1996).
A globular serine protease from Staphylothermus marinus
was found to be extremely thermostable. This enzyme,
which is bound to the stalk of a ®liform glycoprotein
complex, named tetrabrachion, has residual activity even
after 10 min of incubation at 135 °C (Mayr et al. 1996).
The properties of extracellular serine proteases from a
number of Thermococcus species have been analysed
(Klingeberg et al. 1991). The extracellular enzyme from
T. stetteri has a molecular mass of 68 kDa and is highly
stable and resistant to chemical denaturation, as illus-
trated by a half-life of 2.5 h at 100 °C and retention of
70% of its activity in the presence of 1% sodium dodecyl
sulfate (Klingeberg et al. 1995). Another gene encoding a
subtilisin-like serine protease, named aereolysin, has been
cloned fromPyrobaculum aerophilum and the protein was
modelled on the basis of structures of subtilisin-type
proteases (VoÈ lkl et al. 1995). Multiple proteolytic activi-
ties have been observed in P. furiosus. The cell-envelope-
associated serine protease of P. furiosus, called pyrolysin,
was found to be highly stable with a half-life of 20 min at
105 °C (Eggen et al. 1990). The pyrolysin genewas cloned
and sequenced and it was shown that this enzyme is a
subtilisin-like serine protease (Voorhorst et al. 1996).

Proteases have also been characterized from the the-
rmoacidophilic archaeon S. solfataricus (Burlini et al.
1992) and S. acidocaldarius (Fusek et al. 1990; Lin and
Tang 1990). In addition to the serine proteases, other
types of enzymes have been identi®ed in extremophiles: a
thiol protease from Pyrococcus sp. KOD1 (Fujiwara
et al. 1996; Morikawa et al. 1994), a propylpeptidase
and a new type of protease from P. furiosus (Blumentals
et al. 1992; Halio et al. 1996; Harwood et al. 1997;
Robinson et al. 1995). A thermostable serine protease
was also detected in the extreme thermophilic bacterium
Fervidobacterium pennavorans. Interestingly, this enzyme
is able to hydrolyse feather keratin, forming amino acids
and peptides. The enzyme is optimally active at 80 °C
and pH 10.0 (Friedrich and Antranikian 1996).

DNA-processing enzymes: DNA polymerases

DNA polymerases (EC 2.7.7.7) are the key enzymes in
the replication of cellular information present in all life

forms. They catalyse, in the presence of Mg2+ ions, the
addition of a deoxyribonucleoside 5¢-triphosphate onto
the growing 3¢-OH end of a primer strand, forming
complementary base pairs to a second strand. More than
100 DNA polymerase genes have been cloned and se-
quenced from various organisms, including thermophilic
bacteria and archaea. Several native and recombinant
enzymes have been puri®ed and characterized (Perler
et al. 1996). Thermostable DNA polymerases play a
major role in a variety of molecular biological applica-
tions, e.g. DNA ampli®cation, sequencing or labelling
(Table 4).

One of the most important advances in molecular
biology during the last 10 years is the development of the
polymerase chain reaction (PCR, Erlich et al. 1988;
Mullis et al. 1986; Saiki et al. 1988). The ®rst PCR
procedure described utilized the Klenow fragment of
E. coli DNA polymerase I, which was heat-labile and
had to be added during each cycle following the dena-
turation and primer hybridization steps. Introduction of
thermostable DNA polymerases in PCR facilitated the
automation of the thermal cycling part of the procedure.
DNA polymerase I from the bacterium Thermus aqua-
ticus, called Taq polymerase, was the ®rst thermostable
DNA polymerases characterized (Chien et al. 1976;
Kaledin et al. 1980) and applied in PCR.

Taq polymerase has a 5¢±3¢-exonuclease activity, but
no detectable 3¢±5¢-exonuclease activity (Longley et al.
1990). Owing to the absence of a 3¢±5¢-exonuclease ac-
tivity, this enzyme is unable to excise mismatches and, as
a result, the base-insertion ®delity is low (Dunning et al.
1988; Keohavong and Thilly 1989; Ling et al. 1991;
Tindall and Kunkel 1988). The use of high-®delity DNA
polymerases is essential for reducing the increase of
ampli®cation errors in PCR products that will be cloned,
sequenced and expressed. Several thermostable DNA
polymerases with 3¢±5¢-exonuclease-dependent proof-
reading activity have been described, and the error rates
(number of misincorporated nucleotides per base syn-
thesized) for these enzymes have been determined. A
thermostable DNA polymerase from T. maritima
(Huber et al. 1986) was reported to have a 3¢±5¢-exo-
nuclease activity (Bost et al. 1994). Archaeal proof-
reading polymerases such as Pwo pol (Frey and
Suppmann 1995) from P. woesei (Zillig et al. 1987), Pfu
pol (Lundberg et al. 1991) from P. furiosus (Fiala and
Stetter 1986), Deep Vent pol (Perler et al. 1996) from
Pyrococcus strain GB-D (Jannasch et al. 1992) or Vent
pol (Cariello et al. 1991; Mattila et al. 1991) from
T. litoralis (Neuner et al. 1990) have an error rate that is
up to tenfold lower than that of Taq polymerase. The
9°N-7 DNA polymerase from Thermococcus sp. strain
9°N-7 has a ®vefold higher 3¢±5¢-exonuclease activity
than T. litoralis DNA polymerase (Southworth et al.
1996). However, Taq polymerase was not replaced by
these DNA polymerases because of their low extension
rates among other factors. DNA polymerases with
higher ®delity are not necessarily suitable for ampli®-
cation of long DNA fragments because of their poten-
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tially strong exonuclease activity (Barnes 1994). The
recombinant KOD1 DNA polymerase from Pyrococcus
sp. strain KOD1 has been reported to show low error
rates (similar values to those of Pfu), high processivity
(persistence of sequential nucleotide polymerization)
and high extension rates, resulting in a very fast, accu-
rate ampli®cation of target DNA sequences up to 6 kb
(Takagi et al. 1997). In order to optimize the delicate
competition of polymerase and exonuclease activity, the
exo-motif 1 (Blanco et al. 1991; Morrison et al. 1991) of
the 9°N-7 DNA polymerase was mutated in an attempt
to reduce the level of exonuclease activity without totally
eliminating it (Southworth et al. 1996).

An additional problem in the performance of PCR is
the generation of non-speci®c templates prior to thermal
cycling. Several approaches have been made to prevent
the elongation of polymerase before cycling tempera-
tures are reached. Following the use of wax as a me-
chanical barrier between DNA and the enzyme, more
sophisticated methods were invented like the inhibition
of Taq polymerase by a neutralizing antibody at me-
sophilic temperatures (Kellogg et al. 1994; Scalice et al.
1994; Sharkey et al. 1994) or heat-mediated activation of
the immobilized enzyme (Nilsson et al. 1997).

Recently, the PCR technique has been improved to
allow low-error synthesis of long ampli®cates (20±40 kb)
by adding small amounts of thermostable, archaeal
proof-reading DNA polymerases, containing 3¢±5¢-exo-
nuclease activity, to Taq or other non-proof-reading
DNA polymerases (Barnes 1994; Cheng et al. 1994;
Cohen 1994). In this long PCR, the reaction conditions
are optimized for long extension by adding di�erent
components such as gelatine, Triton X-100 or bovine
serum albumin to stabilize the enzymes and mineral oil
to prevent evaporation of water in the reaction mixture.
In order to enhance speci®city, glycerol (Cha et al. 1992)
or formamide (Sarkar et al. 1990) is added.

High-temperature reverse transcription

The technique of DNA ampli®cation has been extended
to include RNA as the starting template by ®rst con-
verting RNA to cDNA, employing either avian myelo-
blastosis virus reverse transcriptase or moloney murine
leukemia virus RT (Frohman et al. 1988; Kawasaki
et al. 1988; Powell et al. 1987). The resultant ®rst-strand
complementary DNA (cDNA) can be used for gene-
rating cDNA libraries, quantifying the levels of gene
expression, or determining unknown sequences of either
the 3¢- or the 5¢-ends of messenger RNA strands. The
latter applications are often referred to as RACE (rapid
ampli®cation of cDNA ends) ``anchored'' PCR (Loh
et al. 1989) or ``one-sided'' PCR (Ohara et al. 1989). A
signi®cant problem in using mesophilic viral reverse
transcriptases is the occurrence of stable secondary
RNA structures at low temperatures (Kotewicz et al.
1988). Many thermostable DNA polymerases, e.g. Taq
polymerase (Jones and Foulkes 1989; Kaledin et al.

1980; Tse and Forget 1990) and the DNA polymerases
from Thermus thermophilus (Auer et al. 1995; Myers and
Gelfand 1991; RuÈ ttimann et al. 1985) or T. caldophilus
(Park et al. 1993) can use RNA as a template in the
presence of Mn2+ instead of Mg2+. The DNA poly-
merase from T. thermophilus was reported to be 100-fold
more e�cient in a coupled RT-PCR than Taq poly-
merase (Myers and Gelfand 1991). Although we could
not ®nd any ®delity values, it is probable that the use of
Mn2+, as in the case of mesophilic DNA polymerases
(Dong et al. 1993; El-Deiry et al. 1984), may increase
the error rate and reduce the ®delity of thermostable
DNA polymerases. The DNA polymerase from Thermus
®liformis has been reported to use Mg2� in RT-PCR,
yielding products comparable to those synthesized by
T. thermophilus DNA polymerase in the presence of
Mn2� (Perler et al. 1996).

DNA sequencing

DNA sequencing by the Sanger method (Sanger et al.
1977) has undergone countless re®nements in the last 20
years. A major step forward was the introduction of
thermostable DNA polymerases, leading to the cycle
sequencing procedure. This method uses repeated cycles
of temperature denaturation, annealing and extension
with dideoxy-DNA termination to increase the amount
of sequencing product by recycling the template DNA.
Because of this ``PCR-like'' ampli®cation of the se-
quencing products, several problems have been over-
come. The cycle denaturation means that, only a few
femtomoles of template DNA are required, no separate
primer annealing step is needed and unwanted second-
ary structures within the template are resolved by high-
temperature elongation.

The ®rst enzyme used for cycle sequencing was the
thermostable DNA polymerase I from T. aquaticus
(Gyllensten 1989; Innis et al. 1988; Murray 1989). As
described by Longley et al. (1990), the enzyme displays
5¢±3¢-exonuclease activity, which is undesirable because
of the degradation of sequencing fragments. This enzy-
matic activity could be deleted by the construction of N-
terminal truncated variants. One of them, which lacks
the N-terminal 289 amino acids, was termed the Sto�el
fragment (Lawyer et al. 1993). Two other variants
lacked the ®rst 235 and 278 amino acids (Barnes 1992,
1994). This deletion goes along with an improvement in
the ®delity of polymerization (Barnes 1992). One of the
disadvantages over conventional sequencing with T7
polymerase was the ine�cient incorporation of chain-
terminating dideoxynucleotides by Taq polymerase into
DNA (Innis et al. 1988). Mutagenetic analysis of the
dNTP binding site revealed that only a single residue is
critical for the selectivity. Therefore, Phe667! Tyr ex-
change in Taq polymerase decreased the discrimination
against dideoxy-NTP several thousandfold (Tabor and
Richardson 1995) resulting in longer reads (Reeve and
Fuller 1995) and improved signals (Fan et al. 1996).
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Another drawback in sequencing e�ciency is the
ability of DNA polymerases to catalyse pyrophos-
phorolysis, resulting in removal of dideoxynucleotides
by pyrophosphate. This backward reaction has been
suppressed by adding a thermostable pyrophosphatase
from Thermoplasma acidophilum (Vander et al. 1997).
Degradation of the inorganic pyrophosphate, therefore,
results in a more e�cient termination reaction. Several
other bacterial thermostable polymerases have been
described for use in cycle sequencing (Table 4), namely
Bst DNA polymerase from Bacillus stearothermophilus
(Mead et al. 1991) or T¯ DNA polymerase from Ther-
mus ¯avus (Rao and Saunders 1992). The most ther-
mostable DNA polymerases are derived from
hyperthermophilic archaea and are therefore highly de-
sirable for application in cycle reactions. Unlike the
above-mentioned PolI-like polymerases, these archaeal
a-like DNA polymerases exhibit strong 3¢±5¢-exonu-
clease activity, which is detrimental for DNA sequen-
cing. As a result of this intrinsic proof-reading activity,
the incorporation of dideoxynucleotides is inhibited al-
most completely. By comparing the primary sequence of
several a-type polymerases, active sites responsible for
3¢±5¢-exonucleolytic activity were detected and altered
by site-speci®c mutagenesis producing polymerases
suitable for cycle sequencing reactions (Kong et al. 1993;
Perler et al. 1996; Sears et al. 1992; Southworth et al.
1996).

Ligase chain reaction

A variety of analytical methods are based on the use of
thermostable ligases. Of considerable potential is the
construction of sequencing primers by high-temperature
ligation of hexameric primers (Szybalski 1990), the de-
tection of trinucleotide repeats through repeat expansion
detection (Schalling et al. 1993) or DNA detection by
circularization of oligonucleotides (Nilsson et al. 1994).

Tremendous improvements have been made in the
®eld of heritable diseases. A powerful analytical method
for detecting single base mutations in speci®c nucleotide
sequences utilizes DNA ligases (Landegren et al. 1988).
Two oligonucleotides are hybridized to a DNA tem-
plate, so that the 3¢ end of the ®rst one is adjacent to the
5¢ end of the second one. In the event that the two
oligonucleotides are perfectly base-paired, a DNA ligase
can link them covalently (Wu and Wallace 1989). A
major drawback of this method is the detection of rel-
ative small amounts of ligated product and the high
background due to unspeci®c ligation by the applied T4
DNA ligase. These problems have been overcome by the
invention of the ligase chain reaction (Barany 1991). In a
preceding step a thermostable ligase links two adjacent
primers at a temperature above 60 °C. This product is
ampli®ed exponentially in the presence of a second set of
complementary oligonucleotides when denaturation,
annealing and ligation are repeated several times, as in
the polymerase chain reaction. The speci®city of the

ligation reaction is dramatically enhanced by performing
the reaction near the melting point of the primers. Re-
markably, the ®rst thermostable DNA ligase was de-
scribed in 1984. It was derived from T. thermophilus
HB8 (Takahashi et al. 1984) and displayed a wide tem-
perature range between 15 °C and 85 °C with an opti-
mum at 70 °C. This enzyme was cloned and
overexpressed 7 years later independently by two dif-
ferent groups (Barany and Gelfand 1991; Lauer et al.
1991). Over the years several additional thermostable
DNA ligases have been discovered. Bacterial enzymes
were derived and cloned from Thermus scotoductus
(Jonsson et al. 1994) and Rhodothermus marinus
(Thorbjarnardottir et al. 1995). Recent studies in the
crude extract of 103 strains of the genera Thermus, Ba-
cillus, Rhodothermus and Hydrogenobacter have revealed
the presence of thermostable DNA ligases in 23 of the
Thermus strains (HjoÈ rleifsdottir et al. 1997). Up to now
only one archaeal DNA ligase from Desulfurolobus
ambivalens has been described (Kletzin 1992). Unlike
bacterial enzymes, this ligase is NAD+-independent but
ATP-dependent, similar to the enzymes from bacterio-
phages, eukaryotes and viruses.

Other enzymes of biotechnological interest

In addition to polymer-degrading and DNA-modifying
enzymes, other enzymes from extremophiles are ex-
pected to play a role in industrial processes involving
reactions like transesteri®cation and peptide, oligo-
saccharide and phospholipid synthesis (Table 5).

Glucose isomerases

Glucose isomerase or xylose isomerase (D-xylose
ketol-isomerase; EC 5.3.1.5) catalyses the reversible iso-
merization of D-glucose and D-xylose to D-fructose and
D-xylulose respectively. The enzyme has the largest
market in the food industry because of its application in
the production of high-fructose corn syrup. This equi-
librium mixture of glucose and fructose is 1.3 times
sweeter than sucrose. Glucose isomerase is widely dis-
tributed in mesophilic microorganisms, and intensive
research e�orts are being directed towards improving its
suitability for industrial application. In order to achieve a
fructose concentration of 55% the reaction must ap-
proach 110 °C. Improved thermostable glucose isomer-
ases have been engineered from mesophilic enzymes
(Crabb and Mitchinson 1997). The gene encoding a xy-
lose isomerase (XylA) of Thermus ¯avus AT62 was
cloned and the DNA sequence was determined. XylA
(185 kDa; 45 kDa/subunit) has its optimum activity at
90 °C and pH 7.0; divalent cations such as Mn2+, Co2+

and Mg2+ are required for the enzyme's activity (Park
et al. 1997). Thermoanaerobacterium strain JW/SL-YS
489 forms a xylose isomerase (200 kDa; 50 kDa/subunit)
that is optimally active at pH 6.4 (60 °C) or pH 6.8
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(80 °C). Like other xylose isomerases, this enzyme re-
quired Mn2+, Co2+ or Mg2+ for thermal stability (sta-
ble for 1 h at 82 °C in the absence of substrate). The gene
encoding the xylose isomerase of Thermus strain JW/SL-
YS 489 was cloned and expressed in E. coli, and the
complete nucleotide sequence was determined. Com-
parison of the deduced amino acid sequence with se-
quences of other xylose isomerases showed that the
enzyme has 98% homology with a xylose isomerase from
a closely related bacterium, T. saccharolyticum B6A-RI
(Liu et al. 1996). A thermostable glucose isomerase was
puri®ed and characterized from T. maritima. The enzyme
is stable up to 100 °C, with a half-life of 10 min at 115 °C
(Brown et al. 1993). Interestingly, the glucose isomerase
from T. neapolitana displays a catalytic e�ciency at
90 °C which is 2±14 times higher than any other the-
rmoactive glucose isomerases at temperatures between
60 °C and 90 °C (Vieille et al. 1995).

Alcohol dehydrogenases

The secondary-speci®c alcohol dehydrogenase, which
catalyses the oxidation of secondary alcohols and, less
readily, the reverse reaction (the reduction of ketones),
has a promising future in biotechnology. Although these
enzymes are widely distributed among microorganisms,
only few examples derived from hyperthemophilic mic-
roorganisms are currently known. Among the extreme
thermophilic bacteria, Thermoanaerobacter ethanolicus
39E was shown to produce an alcohol dehydrogenase
and its gene was cloned and expressed in E. coli
(Burdette et al. 1997). Interestingly, a mutant has been
found to possess an advantage over the wild-type en-
zyme by using the more stable cofactor NAD instead of
NADP. In extreme thermophilic archaea, alcohol de-
hydrogenases have been studied from S. solfataricus
(Ammendola et al. 1992; Pearl et al. 1993; Rella et al.
1987) and from Thermococcus stetteri (Ma et al. 1994).
The enzyme from S. solfataricus requires NAD as co-
factor and contains Zn ions. In contrast to alcohol de-
hydrogenases from bacteria and eukarya, the enzyme
from T. stetteri lacks metal ions. The enzyme catalyses
preferentially the oxidation of primary alcohols, using
NADP as cofactor, and it is very thermostable, showing
half-lives of 15 min at 98 °C and 2 h at 85 °C. Com-
pared to mesophilic enzymes, the alcohol dehydrogenase
from T. litoralis represents a new type of alcohol-oxi-
dizing enzyme system. Recently, the genes of alcohol
dehydrogenases from S. solfataricus and Sulfolobus sp.
strain RC3 were expressed at high level in E. coli and the
recombinant enzymes were puri®ed and characterized
(Cannio et al. 1996).

Esterases

In the ®eld of biotechnology, esterases are receiving in-
creasing attention because of their application in organicT
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biosynthesis. In aqueous solution, esterases catalyse the
hydrolytic cleavage of esters to form the constituent acid
and alcohol whereas, in organic solutions, the transes-
teri®cation reaction is promoted. Both the reactants and
the products of transesteri®cation are usually highly
soluble in the organic phase and the reactants may even
form the organic phase themselves. Clearly, solvent-
stable esterases are formed by the extreme thermophilic
bacterium Clostridium saccharolyticum (Luthi et al.
1990) and the archaeon S. acidocaldarius (Sobek and
Gorisch 1988). Recently, the P. furiosus esterase gene
has been cloned in E. coli and the functional properties
have been determined. The archaeal enzyme is the most
thermostable (a half-life of 50 min at 126 °C) and ther-
moactive (optimum temperature of 100 °C) esterase
known to date (Ikeda and Clark 1998).

Conclusion

The steady increase in the number of newly isolated
thermophilic and hyperthermophilic microorganisms
and the related discovery of their enzymes document the
enormous potential within this scienti®c ®eld. Although
major advances have been made in the last decade, our
knowledge of the physiology, metabolism, enzymology
and genetics of this fascinating group of organisms is
still limited. In-depth information on the molecular
properties of the enzymes and their genes, however, has
to be obtained in order to analyse the structure and
function of proteins that are catalytically active around
the boiling point of water. There is little doubt that
extremophiles will supply novel catalysts with unique
properties. Furthermore, modern techniques like muta-
genesis and gene shu�ing will lead to in vitro tailored
enzymes that are highly speci®c for countless industrial
applications. Owing to the unusual properties of this
class of enzymes, they are expected to ®ll the gap be-
tween biological and chemical industrial processes.
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